
AmigaNCP

The AmigaOS implementation of the Psion NCP Network Protocol

Release 1.9

27.10.1996

by Oliver Wagner

Chapter 1: Copyright 1

1 Copyright

The AmigaNCP package has been written by

Oliver Wagner

Mrkische Str. 24

D-42281 Wuppertal

Germany

email: owagner@vapor.com

The AmigaNCP driver library, the AmigaNCP File Server, the AmigaNCP File System, the

AmigaNCP Documentation and all associated �les are copyright (C) 1993-1996 Oliver Wagner, All

Rights Reserved.

Psion, the Psion Logo, Psion Series 3, 3-Link, Psion HC, Psion MC, SSD and Solid State

Disk are registered Trademarks of Psion PLC.

The author wishes to thank the following people for their help during AmigaNCP development:

David Wood of Psion Ltd.

Who provided the necessary information about the NCP protocol and helped with beta

testing the package

Jeremy "Jezar" Wake�eld of Psion Ltd.

Who helped to track down several hidden and esoteric bugs.

Eric (ed@ramses.fdn.org)

For providing the french catalog translation.

Phil Trickett (phil@dcs.king.ac.uk)

For the additional icon images.

2 AmigaNCP Documentation

Chapter 2: Introduction 3

2 Introduction

2.1 Overview

Psion's �ne palmtop computer series, namely the S3 and S3a, contain an even �ner operating

system, whose neat features cover a full
edged peer-to-peer networking software using a protocol

called NCP.

Using NCP, you can link together two Psion computers or a Psion and a di�erent, perhaps

stationary machine and happily exchange data on your behalf. NCP services include, but are not

limited to, accessing �les on the remote machines as if they were on yours, in both directions.

Linking your palmtop to your stationary machine is generally quite a good idea. Doing so via

the NCP protocol requires your stationary machine to have an implemention of this protocol. There

have only been implementations for MS-DOS clones (the `MCLINK.EXE' shell), for Apple MacIntosh

and for Acorn Archimedes { until now.

AmigaNCP features a full NCP implementation including a remote �le server to access Amiga

�les from your Psion and a �le system to access Psion �les from your Amiga. The package also

o�ers an API to allow custom applications to directly access network services at the NCP level.

2.2 Parts of AmigaNCP

AmigaNCP actually consists of several di�erent programs.

The main part is the `amigancp.library'. It contains the basic network services for exchanging

data between two machines via a serial connection. The protocol provides up to 8 data channels,

which can be either passive (awaiting a connection from a client process) or active (attempting to

connect to a server process). One of the channels is reserved for the network supervisor application

LINK. The LINK functionality also has been integrated into `amigancp.library'.

Besides network I/O functions, the library also provides several utility functions to deal with

Psion text format and the Intel byte ordering.

The `AmigaNCP-FileServer' is an application built on top of `amigancp.library'. It provides

a means of accessing AmigaDOS �les from the remote Psion computer via the `REM::' �le system.

This allows you to access Amiga �les just as if they were local Psion �les. With the Psion S3a, it

allows you to use the Backupoption to backup vital data �les on your Amiga's harddisk.

The `AmigaNCP-FileSystem' uses the `amigancp.library'to connect to the �le server running

on your Psion in order to provide access to Psion �les from the AmigaDOS environment. It provides

a new AmigaDOS device named `NCP:' which o�ers access to all available Psion devices. The Psion

devices will be mounted as subdirectories in the `NCP:' window.

The `AmigaNCP-Monitor' monitors the activity of the NCP supervisor and gives detailed statis-

tics about all channels. This is an invaluable aid for debugging NCP applications.

4 AmigaNCP Documentation

The `S3PrintServer' allows you to print from your S3 or S3a directly to a printer connected to

the Amiga.

The `S3Run' program remotely launches programs or applications on your Psion.

Chapter 3: Using AmigaNCP 5

3 UsingAmigaNCP

3.1 Installation

For using AmigaNCP you'll need...

1. any Amiga equipped with OS 2.04 or better and a free serial port

2. the IBM-PC version of the 3-Link serial cable

3. and a Psion S3 or S3a (or any other model featuring Remote Link)

1

.

To support Amiga systems without a hard disk, the AmigaNCP distribution has been organized

to be ready-to-use.

Hard disk installation of AmigaNCP is best done using the provided Installer script. The

script will (by default) copy `amigancp.library' to `LIBS:', put the language catalogs into

`LOCALE:Catalogs/' and create an `AmigaNCP' drawer on your work partition. The drawer will

contain the network services, documentation and the NCP tools. There's an additional option for

installing the `amigancp.library' developer material.

When installing the package for the �rst time, the installation procedure will ask you about the

Psion model you're going to connect to. The serial line speed will be set to the model's maximum

(that is 9600 baud for the S3 or HC and 19200 baud for S3a or MC). You may change the serial

parameters later on, though.

3.2 Con�guring `amigancp.library'

The default serial con�guration is to use the `serial.device', unit 0, at 9600 baud

2

.

You can overwrite these default parameters by setting or changing the environment variable

NCP.con�g. The environment variable will be read by the `amigancp.library' each time a serial

connection has to be established.

The parameter parsing is done just like in a shell command line; the template is `D=DEVICE/K,

U=UNIT/K/N, B=BAUD/K/N, NOREQ/S'. All parameters are optional, those not given will retain their

default values.

An example: To make AmigaNCP use `duart.device', unit 1 at 19200 baud you have to set

`ENV:NCP.config' to

`DEVICE=duart.device UNIT=1 BAUD=19200'

1

In fact of course any NCP implementation does. You can use AmigaNCP to connect to an

NCP server running on an IBM PC or Apple Mac, or even to another AmigaNCP running on

a di�erent Amiga.

2

All other serial
ags are �xed to 8N1, highspeed mode and 7-wire RTS/CTS handshake since

this is required by the NCP protocol.

6 AmigaNCP Documentation

The installation script will create both `ENV:NCP.config' and `ENVARC:NCP.config' with either

`DEVICE=serial.device UNIT=0 BAUD=9600'

or

`DEVICE=serial.device UNIT=0 BAUD=19200'

depending on your choice of Psion model. Please note, that you may actually use anybaud rate

supported by the serial port in question (and of course supported by the other side's serial interface

as well).

If you set the NOREQ switch, the library will not display any error requesters.

Note that you have to con�gure the remote site as well. On the Psion S3 or S3a this consists

of turning on NCP via the Remote Link menu of the system screen. The baud rate must of course

be set to the same value as used in `ENV:NCP.config', or to 9600 if no con�guration �le exists.

3.3 Starting AmigaNCP

You don't start `amigancp.library'directly. Instead you start one or more of the AmigaNCP

applications, which in turn will open the library and try to establish their connections to the remote

NCP site.

The library automatically terminates a connection about 10 seconds after the last application

has closed its network channels.

Note that the underlying serial device is free to be used by any other application as long as no

NCP connection is active and no connection attempt is made.

3.4 NCPRequesters

The `amigancp.library' will put up error requesters if the network link breaks (and the NOREQ

switch hasn't been set, see above). The following table shows possible error conditions:

Can't open serial device

The device speci�ed in `ENV:NCP.config' could not be opened. Either the device does

not exist (perhaps just because you misspelled the device name) or it is in use by

another process.

Timeout waiting for response

The serial device opened ok but the other side is not responding to our handshake

packet. Most likey there is no Psion connected, or it has it's Remote Link turned o�.

This requester will constantly show up if the AmigaNCP �le system is running and the

serial link broke down.

Chapter 3: Using AmigaNCP 7

Data not acknowledged

The last data packet has not been acknowledged. This normally denotes an NCP

connection which has been interrupted during data transfer.

Connection dropped

The remote side dropped the connection.

Argument error

Bad LLMAC request arguments. You normally should not see this error, it denotes an

internal failure in the `amigancp.library' high level I/O functions.

Not connected

There is no LLMAC connection. You normally should not see this error, it denotes an

internal failure in the `amigancp.library' high level I/O functions.

8 AmigaNCP Documentation

Chapter 4: AmigaNCP File Server 9

4 AmigaNCP File Server

4.1 Introducing the File Server

The AmigaNCP File Serveris an NCP application which provides access to Amiga �les from the

remote machine. On startup it creates a passive NCP channel awaiting a connection from a remote

�le system.

On the S3 and S3a, the remote �le system is built into the ROM. It automatically attempts to

connect to the remote �le server when an NCP connection is made, and presents a new �lesystem

node named `REM::', which in turn contains all the Amiga devices. You can navigate through the

Amiga devices via the system screen or directly access a �le by it's full path name.

The Psion's �le system was designed to be device independant, so there are no restrictions

concerning the length of �le names or extensions: The complete Amiga device, directory and �le

names are fully preserved. However, directories are separated in the standard Psion manner via

the `\' character.

An example: To access the Amiga �le `HD1:Test/Test.txt' from the Psion, use the �le name

`REM::HD1:\TEST\TEST.TXT'. To access `SYS:S/Startup-Sequence', use `REM::\SYS:\STARTUP-SEQUENCE'.

When asked for a device list, the AmigaNCP File Server will output only real �le system devices

1

.

However, you may in fact access any AmigaDOS device, even volumes and assigned names, from

the remote site by using the direct path to it.

An example: To access the Amiga's parallel port from the remote site, just use the path

`REM::PAR:\'. This is quite useful for using the print-to-�le capabilities of some of the Psion

applications.

4.2 Character conversion mode

Since the Psion's operating system uses a di�erent character codeset than the Amiga does, you

normally can't easily exchange ASCII �les between the two machines. The AmigaNCP File Server

however provides a special conversion mode which allows to convert �les on the
y.

Whenever you add the special extension `.CV' to any remote �le name, all characters read

from or written to that �le will automatically be converted by AmigaNCP. The conversion is fully

transparent to your applications.

An example: To edit the Amiga text �le `HD1:Test/Test.TXT' on the S3 with automatic char-

acter conversion, use the virtual �le name `REM::HD1:\TEST\TEST.TXT.CV'.

1

Tech info: Any device which responds positively to ACTION IS FILESYSTEM is considered to

be a real �le system.

10 AmigaNCP Documentation

Note that character conversion mode should be used onlyfor text �les. The S3 and S3a Word �le

format for example contains binary data which will be gracefully mangled if accessed in conversion

mode.

4.3 File Server Options

The AmigaNCP File Server may be started either from the shell or from Workbench. To

terminate the server, just start it again, it will put up a requester showing you the number of �les

in use and asking you whether you really want to quit.

The File Server accepts several options to modify the way it operates. Note that you have to

set up `amigancp.library' �rst (See Chapter 3 [Using AmigaNCP], page 5.).

Options may be given on the command line (shell) or using tooltype entries (Workbench). You

may use project icons to start the File Server in order to have di�erent con�gurations at hand.

The option template is:

IBM=CHARSETCONV/S,

SHOWICONS=SHOWINFO/S,

HIDEEMPTYDRIVES/S,

BUFFER=BUFFERSIZE

You may enter ? to get additional help at the command line. Detailed parameter descriptions

follow.

4.3.1 CharSetConv

When the remote �le system requests a directory scan, the �le server examines each �le to

determine whether it is a text �le or not

2

. Text �les are then returned both with their normal

name and with the magic extension `.CV'added.

4.3.2 ShowInfo

Show `*.info'and `.backdrop'�les during a directory scan. You normally shouldn't set this

option, the Psion has no use for these �les and directory scans are much faster without them.

Please note that the Psion's `Delete Whole Directory' function will only work correctly on

Amiga directories if ShowInfo has been enabled.

2

Tech info: This is done by reading the �rst 512 Bytes and scanning them for non-printable

characters. Files with the S protection bit set are always assumed to be text �les.

Chapter 4: AmigaNCP File Server 11

4.3.3 HideEmptyDrives

Upon a device list query, don't return drives which currently do not contain a medium. This

option is intended mainly to overcome an annoying quirk in the S3 and S3a system screen which

resets the current device to `LOC::\M\' each time a device reports `E_NOT_READY'. This normally

always happens when getting to `REM::DF0:' with no disk in the drive.

Note that, although these devices are not visible in the device list, they may as usual be accessed

by manually entering the device name.

4.3.4 BufferSize

Set the size of the �lehandle bu�ers used by the File Server. This parameter defaults to 4096

Bytes and normally doesn't need to be changed

3

.

3

This option has no e�ect on AmigaOS below version 3.1

12 AmigaNCP Documentation

Chapter 5: AmigaNCP File System 13

5 AmigaNCP File System

5.1 Introducing the File System

The AmigaNCP File System is an NCP application which provides access from the AmigaDOS

environment to �les on the remote machine. It creates a new AmigaDOS device named `NCP:',

which in turn contains all remote devices as subdirectories.

The Amiga directory `NCP:A' refers to the device `A:' on the remote side, `NCP:M' refers to `M:'

and so on.

If you want to access any �le on the remote device, just add the full path name. To access the

�le `A:\WRD\SECRET.WRD', just use the Amiga �le name `NCP:A/WRD/SECRET.WRD'.

You can access the new device from any Amiga application, including Workbench and your

favourite directory tool, as if they were standard Amiga �les.

On startup, the AmigaNCP File System immediately attempts to connect to the File Server on

the remote machine. If no connection can be made, the File System will refuse to start. You may

attempt to quit it at any time by starting it again, however, due to AmigaDOS constraints it will

refuse to quit if there are any �les or locks still in use.

5.2 Character Conversion Mode

The AmigaNCP File System also features the character conversion mode. If you enable this

option, all remote devices will be mirrored as `CONV_<devname>', and all characters read from or

written to �les within these subdirectories will automatically be converted.

Example: To access `A:\WRD\SECRET.TXT' with character conversion, use the �le name

`NCP:CONV_A/WRD/SECRET.TXT'.

The translation is fully transparent; you may, for example, use your favourite text editor to load

a text �le from the Psion, edit it and save it again. Upon reading, it will be converted to the Amiga

ISO character set, upon writing, it will be converted back to the IBM codes used by the Psion.

5.3 File System Options

The File System accepts several options to modify the way it operates. Note that you have to

set up `amigancp.library' �rst (See Chapter 3 [Using AmigaNCP], page 5.).

Upon shell startup, options are speci�ed on the command line. The template is:

VOL=VOLUMENAME/K,

DEV=DEVICENAME/K,

14 AmigaNCP Documentation

SR=SHAREDREAD/S,

IBM=CHARSETCONV/S,

HED=HIDEEMPTYDRIVES/S,

DWMS=DONTWARNMISSINGSERVER/S,

ARR=AUTOREREAD/S,

ID=ICONDIR/S

You may enter ? to get additional help at the command line. See below for detailed descriptions

of these parameters.

If started fromWorkbench, the File System application will read its icon and parse the tooltypes

for the same option keywords. You may use project icons for starting the File System in order to

have di�erent con�gurations at hand.

5.3.1 VolumeName

This options allows you to set the volume node name of the File System. Defaults to

`AmigaNCP-Remote'. This is the name the Workbench shows below the disk icon.

5.3.2 DeviceName

Modi�es the device name of the File System. Defaults to `NCP:'.

5.3.3 SharedRead

For historical reasons, there is no real read onlymode in the AmigaDOS. The access mode MODE_

OLDFILE can be used for reading and writing an existing �le from multiple accessors. So an Amiga

�le system cannot predict whether a �le opened with MODE_OLDFILEwill also be written to.

The Psion �ling system however limits multiple �le access to read only mode.

To be as compatible as possible with existing Amiga applications, the AmigaNCP File System

by default translates MODE_OLDFILEto exclusive read/write access on the Psion.

This may cause problems if a �le is already opened for reading from the Psion side, perhaps

because you have a Psion application running which accesses this �le. Even a read only access from

the Amiga side will fail because it translates to a read/write access on the Psion side.

In order to overcome this AmigaDOS quirk, the AmigaNCP File System provides this option to

translate MODE_OLDFILEto a shared read access on the Psion side. Every write attempt on such a

�le will result in a ERROR_WRITE_PROTECTED.

Chapter 5: AmigaNCP File System 15

5.3.4 CharSetConv

Activate character conversion mode. All Psion devices are mirrored as CONV_<devname and

read/write accesses to �les within these drawers are silently translated.

Note that �le handles opened in character conversion mode don't support ACTION_SEEK. This

may cause problems with some applications.

5.3.5 HideEmptyDrives

Don't create subdirectories for Psion devices which don't contain a medium.

5.3.6 DontWarnMissingServer

The File Server should normally be started �rst, because the Psion LINK application attempts

to contact it as soon as the connection has been established, and it will not try again if no connection

could be made.

Therefore, the File System will warn you with a requester if it can't detect the AmigaNCP File

Server when it is started. Setting this option instructs the File System not to do so.

5.3.7 AutoReRead

By default, the File System reads the remote device list only once at the time it is started.

This should normally be no problem, unless you use HideEmptyDrives and replace SSD car-

tridges while a connection is active.

You can use DiskChange NCP: at any time to manually force the File System to read the device

list again. Or you can set AutoReRead, which causes the File System to read the device list from

the remote side upon every access, which of course will slow accesses down a bit.

5.3.8 IconDir

In order to be compatible with the Workbench environment, the File System stores icon and

workbench information �les (`.info' and `.backdrop') in a special �le hierarchy on the AmigaDOS

side. This allows you to do snapshoting and backdroping of icons belonging to Psion �les without

wasting valuable storage memory on the Psion. This also avoids the problem that the Psion �le

system can't handle �le extensions longer than three characters.

The default path for storing these �les is the drawer `Icons'in the subdirectory where the File

System program resides. Using the IconDir option, you can specify another path. This is quite

useful if you use AmigaNCP to connect to di�erent Psions with di�erent �le structures.

16 AmigaNCP Documentation

The �le structure inside this IconDir drawer is organized exactly like in the `NCP:'device. So, a

icon �le belonging to `WRD' drawer on the `M' device on the Psion is located in `Icons/M/WRD.info'.

5.4 Implementation Details

The AmigaNCP File System supports the following AmigaDOS packet types:

� ACTION IS FILESYSTEM

� ACTION FLUSH

� ACTION DISK INFO

The resulting disk sizes are calculated by adding the per-device sizes of the underlying Psion

devices.

� ACTION INFO

� ACTION COPY DIR

� ACTION COPY DIR FH

� ACTION LOCATE OBJECT

� ACTION FREE LOCK

� ACTION EXAMINE FH

� ACTION EXAMINE OBJECT

� ACTION EXAMINE NEXT

Psion directory lists are read completly on the �rst EXNEXT packet and kept in a private

cache of the lock. This results in a ExAll()like performance even with using the old style

directory scanning packets.

� ACTION CURRENT VOLUME

� ACTION SAME LOCK

� ACTION CREATE DIR

� ACTION PARENT

� ACTION PARENT FH

� ACTION DELETE OBJECT

� ACTION RENAME OBJECT

Note that renaming an non-icon �le to an icon-�le will yield ERROR_RENAME_ACROSS_DEVICES.

� ACTION DIE

� ACTION FINDINPUT

See the description of the SharedRead option for di�eren translation modes.

� ACTION FINDOUTPUT

� ACTION FINDUPDATE

This always translates to exclusive access on the Psion side.

� ACTION INHIBIT

� ACTION END

� ACTION READ

� ACTION WRITE

� ACTION SEEK

Not available on �les opened in character conversion mode.

� ACTION SET PROTECT

Supports FIBF__ARCHIVE, FIBF_READ, FIBF_WRITE and FIBF_EXECUTE.

� ACTION SET DATE

Chapter 6: Other Tools 17

6 Other Tools

The AmigaNCP package contains a few more programs which are meant for the advanced user.

Since they are also good examples for how to access the `amigancp.library', the source code for

most of these utilities can be found in the `Developer/Source/' drawer.

6.1 AmigaNCP-Monitor

The AmigaNCP-Monitoris a utility for monitoring the current network activity. It displays

an overview over the eight avaible NCP channels, their users, current connection states and the

amount of data that has been transferred.

AmigaNCP-Monitor may be started either from the shell or from Workbench. There are no

additional parameters. The window position will be saved as a tooltype entry.

The Monitor opens a single window on the workbench screen. The top part displays the states of

the eight network channels, the bottom part shows overall statistics and whether NCP is currently

connected.

ThisProc The network name of the Amiga process using the channel. The �rst channel is always

allocated by the LINKapplication.

RemotePr The name of the remote process. This may be empty, meaning the channel is currently

not connected.

`UnknClnt' identi�es a passive channel connected to an unknown client.

For the �rst channel, this may be either `ARemLink',denoting that the current connec-

tion has been initiated by the remote link, or `PRemLink', if the current connection was

opened on behalf of the `amigancp.library'.

Status This
ag array denotes various internal states of `amigancp.library'.

Bytes Sent

How many bytes have been sent through this channel?

Bytes Received

How many bytes have been received through this channel?

Online since

The time on which `amigancp.library' was started �rst. The startup time is used by

the NCP protocol to determine whether a broken connection can be reestablished or

not.

Remote NCP

The remote NCP's startup time.

Version The remote NCP's version. This is generally `2' for AmigaNCP and the Psion S3 and

`3' for the S3a.

Connected

This will be displayed whenever there is an active connection to any remote NCP.

18 AmigaNCP Documentation

6.2 S3PrintServer

The S3PrintServer is a small utility which allows you to print from your Psion directly to a

printer connected to the Amiga. It uses the Psion's capability to print to a serial printer, and

simply passes any data from the serial port directly to the printer device via raw writes.

You have to turn o� the Remote Link on the Psion side and terminate any NCP application

running on the Amiga side before starting the S3PrintServer. If you forget to turn o� the Remote

Link, junk will be printed due to misinterpreted NCP packets!

You must also set your Psion's printer con�guration to serial printing, with the same baud rate

used for NCP connections, turn o� Xon/Xoff and turn on RTS/CTS and DSR/DTR handshaking. The

S3PrintServer itself reads the serial con�guration from the �le `ENV:NCP.config'.

The S3PrintServer uses the raw write capabilities of the `printer.device' and therefore ignores

any printer driver settings. However, it respects your choice on which device to print, and even

allows printing via network printer services, e.g. Envoy Network Printing.

Therefore, you mustselect the correct WDRprinter driver on the Psion. This can be done in the

Printer Setupdialog of the Word application.

Having done all this, you can print from your Psion applications simply by selecting the Print...

menu, just as if the printer was connected directly to the Psion.

6.3 S3Run

The S3Run utility uses the LINKapplication's capability to launch a process on the remote side.

It's a shell only program which takes one or two parameters: `S3Run filename commandline'

The �rst argument denotes the �le name of the remote program to run, for example `TEST.IMG'.

Due to NCP restrictions, this may only be a program on the Psion's top level directory or ROM.

The second argument may contain the command line to be passed to the created process. This

argument may be omitted, in which case no command line will be passed.

You may use \xx escaping to insert the hexadecimal code xxinto the command line. See the

Psion SIBO SDK Manual for more information on S3 command lines.

Appendix A: API 19

AppendixA API

This part of the AmigaNCP documentation describes the use of AmigaNCP services within

custom applications. It assumes a broad knowledge of programming AmigaOS.

A.1 NCP Implementation

The Psion NCP network protocol consists of four layers:

Serial Layer

A simple asynchronous serial 8/N/1 connection. This is in fact the hardware serial

connection built into the 3-Link.

Packet Layer

A packet protocol providing checksums and multiple retransmissions. It is called

LLMACand somewhat based on the MNP type protocols.

NCP Layer NCP provides up to eight independant data streams between local and remote pro-

cesses. Under the Psion OS, a process may use only one NCP channel at a time.

Application Layer

Applications built on top of the NCP data stream service. This includes the remote �le

system and remote �le server. There is also a supervisory application called LINKwhich

controls the server setup.

A more detailed description of NCP usage from the Psion side can be found in the Psion SIBO

SDK Manual, I/O Devices Reference.

On the Amiga side, the serial layer is provided through any standard EXEC serial device,

normally this will be the internal port's `serial.device'. The packet and NCP layers have been

built into the `amigancp.library'.

Besides these basic layers, also the supervisory LINK application resides in the

`amigancp.library'.

All network services are accessible via function calls to the `amigancp.library'. In order to use

these functions, you have to open the `amigancp.library'�rst:

#include <libraries/ncp.h>

struct Library *NCPBase;

NCPBase = OpenLibrary("amigancp.library", NCP_VERSION);

if(!NCPBase)

fail_app();

If you use SAS/C 6.50 or above, you may want to use the link library `ncp.lib' provided in the

development toolkit. It contains a constructor/destructor pair that automatically opens/closes the

`amigancp.library' upon startup/termination of your application.

If you are not using C, you'll have to build your own language speci�c glue de�nitions. A

function description �le (`Developer/FD/ncp_lib.fd') has been included. The AmigaNCP pro-

20 AmigaNCP Documentation

gramming interface doesn't use any fancy data structures, so you should have no problems with

other programming languages.

The NCP network services are based on channels. A channel is a connection between a local

and a remote processes. In the Psion EPOC environment, a channel is bound to a single process

and bears the name of that process. AmigaNCP allows you to specify arbitrary names for your

channels, along with having multiple channels within a single application, if you wish to do so.

A channel may be opened in either active or passive mode. An active channel attempts to

connect to a remote process with a given name and refuses to open if the remote process doesn't

exists or already is busy with some other connection. A passive channel just sits around awaiting a

connection from the remote site. Passive channels are normally used for server applications awaiting

connections from their clients, whereas active channels are used by clients to contact their server

application.

I/O via NCP is done either synchronously or asynchronously. The I/O interface of the

`amigancp.library' is quite similar to the EXEC device I/O interface. See the function descrip-

tions of the NCP I/O functions for more details.

The `Developer/Source/' drawer provides some examples to show the use of the

`amigancp.library' calls.

A.2 Function Reference

Note that this function reference is also available in standard Amiga Autodoc format

(`Developer/Autodocs/ncp.doc').

The `amigancp.library' also contains a clone set of the exec.library memory pool functions

which do work with AmigaOS 2.x systems. The the exec.library documentation for more informa-

tion about these functions.

A.2.1 NCP CloseChannel

NAME

NCP_CloseChannel -- close an NCP channel

SYNOPSIS

NCP_CloseChannel(channel)

A0

void NCP_CloseChannel(APTR);

FUNCTION

Close a NCP channel previously opened by NCP_OpenChannel().

If this is an active link to the remote machine, it will be

closed.

INPUTS

channel -- channel to close. May be NULL, in which case

this functions does nothing.

Appendix A: API 21

RESULT

None.

EXAMPLE

NOTES

An active NCP connection will be dropped about 10s

after the last channel has been closed.

BUGS

None known.

SEE ALSO

NCP_OpenChannel()

A.2.2 NCP OpenChannel

NAME

NCP_OpenChannel -- open an NCP channel to attempt to connect to

the remote.

SYNOPSIS

channel = NCP_OpenChannel(localname, remotename, flags)

D0 A0 A1 D0

APTR NCP_OpenChannel(STRPTR, STRPTR, ULONG);

FUNCTION

Opens an NCP channel. If remotename is not NULL, attempts

to connect to the remote process and fails with a NULL

return if the connection could not be made. If remotename

is NULL, creates a passive channel silently awaiting remote

connection.

INPUTS

localname -- name of local "process"

remotename -- either NULL for a passive channel or

the remote process name which to connect

to

flags -- currently unused, leave at 0

RESULT

channel -- pointer to a channel object. NULL in case of

an error, whereas additional error information

can be found in IoErr()

EXAMPLE

To connect to the remote file server:

APTR channel;

channel = NCP_OpenChannel("TestHost", "SYS$RFSV.*", 0);

NOTES

Opening an active channel will result in an attempt to

create an NCP connection and fail upon any error (including

serial failure or inexistance of the remote process).

Creating an passive channel will not cause an NCP connection

attempt; this is done upon the first I/O request made to

channel.

22 AmigaNCP Documentation

BUGS

None known.

SEE ALSO

NCP_CloseChannel()

A.2.3 NCP Read

NAME

NCP_Read -- do a read request.

SYNOPSIS

status = NCP_Read(channel, data, datasize)

D0 A0

LONG NCP_Read(APTR, APTR, ULONG);

FUNCTION

This is basically identical to calling NCP_BeginRead()

followed by NCP_WaitRead().

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

data -- receive buffer

datasize -- receive buffer size

RESULT

status -- number of bytes read or a negative error

number.

EXAMPLE

NOTES

BUGS

SEE ALSO

NCP_WaitRead(), NCP_BeginRead(), NCP_AbortRead(), NCP_CheckRead()

A.2.4 NCP BeginRead

NAME

NCP_BeginRead -- start a read request on the NCP channel.

SYNOPSIS

error = NCP_BeginRead(channel, data, datasize)

D0 A0 A1 D0

LONG NCP_BeginRead(APTR, APTR, ULON G);

FUNCTION

Queues a read operation on the current NCP channel.

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

data -- receive buffer

datasize -- receive buffer size

RESULT

Appendix A: API 23

error -- either 0 if the read was queued successfully

or a negative error number

EXAMPLE

NOTES

Only one read request may be queued at a time on a single

channel. This function fails with NCPE_INUSE if there is

already a read request outstanding.

BUGS

None known.

SEE ALSO

NCP_Read(), NCP_WaitRead(), NCP_AbortRead(), NCP_CheckRead()

A.2.5 NCP AbortRead

NAME

NCP_AbortRead -- abort read currently in progress

SYNOPSIS

NCP_AbortRead(channel)

A0

void NCP_AbortRead(APTR)

FUNCTION

Aborts the current read request on the given NCP channel.

Does nothing if no read is pending.

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

RESULT

None.

EXAMPLE

NOTES

Never forget to finish a read request using NCP_WaitRead(),

or you'll end up in OS hell.

BUGS

None known.

SEE ALSO

NCP_Read(), NCP_WaitRead(), NCP_CheckRead(), NCP_BeginRead()

A.2.6 NCP CheckRead

NAME

NCP_CheckRead -- check if a read request is still pending

SYNOPSIS

status = NCP_CheckRead(channel)

D0 A0

LONG NCP_CheckRead(APTR)

24 AmigaNCP Documentation

FUNCTION

Check if a read request is still pending on the given NCP

channel.

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

RESULT

status -- FALSE if a read is currently pending,

TRUE if no request is pending or the current

request has completed.

EXAMPLE

NOTES

Never forget to finish a read request using NCP_WaitRead(),

or you'll end up in OS hell.

BUGS

None known.

SEE ALSO

NCP_Read(), NCP_WaitRead(), NCP_AbortRead(), NCP_BeginRead()

A.2.7 NCP WaitRead

NAME

NCP_WaitRead -- complete a read request on the NCP channel.

SYNOPSIS

result = NCP_WaitRead(channel)

D0 A0

LONG NCP_WaitRead(APTR);

FUNCTION

Waits for the current read request to finish and

returns the result.

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

RESULT

status -- number of bytes read or a negative error

number.

EXAMPLE

NOTES

Every read request startet with NCP_BeginRead() absolutely

must be followed by a NCP_WaitRead(), even if it already

finished or was aborted via NCP_AbortRead().

BUGS

Calling this function without an queued read request

will hang up your process.

SEE ALSO

NCP_Read(), NCP_BeginRead(), NCP_AbortRead(), NCP_CheckRead()

Appendix A: API 25

A.2.8 NCP ReadSig

NAME

NCP_ReadSig -- return signal mask of channel read port.

SYNOPSIS

sigmask = NCP_ReadSig(channel)

D0 A0

ULONG NCP_ReadSig(APTR);

FUNCTION

This function returns the signal mask of the read port

of the given NCP channel. This signal is set if a read

request completes.

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

RESULT

sigmask -- signal mask of read port.

EXAMPLE

NOTES

Note that this function returns a signal mask, not a signal bit number.

BUGS

SEE ALSO

NCP_BeginRead()

A.2.9 NCP Write

NAME

NCP_Write -- do a write request.

SYNOPSIS

status = NCP_Write(channel, data, datasize)

D0 A0 A1 D0

LONG NCP_Write(APTR, APTR, ULONG);

FUNCTION

This is basically identical to calling NCP_BeginWrite()

followed by NCP_WaitWrite().

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

data -- receive buffer

datasize -- receive buffer size

RESULT

status -- number of bytes written or a negative error

number.

EXAMPLE

NOTES

BUGS

26 AmigaNCP Documentation

SEE ALSO

NCP_WaitWrite(), NCP_BeginWrite(), NCP_AbortWrite(), NCP_CheckWrite()

A.2.10 NCP BeginWrite

NAME

NCP_BeginWrite -- start a write request on the NCP channel.

SYNOPSIS

error = NCP_BeginWrite(channel, data, datasize)

D0 A0 A1 D0

LONG NCP_BeginWrite(APTR, APTR, ULON G);

FUNCTION

Queues a write operation on the current NCP channel.

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

data -- data buffer

datasize -- data buffer size

RESULT

error -- either 0 if the write was queued successfully

or a negative error number

EXAMPLE

NOTES

Only one write request may be queued at a time on a single

channel. This function fails with NCPE_INUSE if there is

already a write request outstanding.

BUGS

None known.

SEE ALSO

NCP_Write(), NCP_WaitWrite(), NCP_AbortWrite(), NCP_CheckWrite()

A.2.11 NCP AbortWrite

NAME

NCP_AbortWrite -- abort write currently in progress

SYNOPSIS

NCP_AbortWrite(channel)

A0

void NCP_AbortWrite(APTR)

FUNCTION

Aborts the current write request on the given NCP channel.

Does nothing if no write is pending.

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

RESULT

Appendix A: API 27

None.

EXAMPLE

NOTES

Never forget to finish a write request using NCP_WaitWrite(),

or you'll end up in OS hell.

BUGS

None known.

SEE ALSO

NCP_Write(), NCP_WaitWrite(), NCP_CheckWrite(), NCP_BeginWrite()

A.2.12 NCP CheckWrite

NAME

NCP_CheckWrite -- check if a write request is still pending

SYNOPSIS

status = NCP_CheckWrite(channel)

D0 A0

LONG NCP_CheckWrite(APTR)

FUNCTION

Check if a write request is still pending on the given NCP

channel.

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

RESULT

status -- FALSE if a write is currently pending,

TRUE if no request is pending or the current

request has completed.

EXAMPLE

NOTES

Never forget to finish a write request using NCP_WaitWrite(),

or you'll end up in OS hell.

BUGS

None known.

SEE ALSO

NCP_Write(), NCP_WaitWrite(), NCP_AbortWrite(), NCP_BeginWrite()

A.2.13 NCP WaitWrite

NAME

NCP_WaitWrite -- complete a write request on the NCP channel.

SYNOPSIS

result = NCP_WaitWrite(channel)

D0 A0

LONG NCP_WaitWrite(APTR);

28 AmigaNCP Documentation

FUNCTION

Waits for the current write request to finish and

returns the result.

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

RESULT

status -- number of bytes written or a negative error

number.

EXAMPLE

NOTES

Every write request startet with NCP_BeginWrite() absolutely

must be followed by a NCP_WaitWrite(), even if it already

finished or was aborted via NCP_AbortWrite().

BUGS

Calling this function without an queued write request

will hang up your process.

SEE ALSO

NCP_Write(), NCP_BeginWrite(), NCP_AbortWrite(), NCP_CheckWrite()

A.2.14 NCP WriteSig

NAME

NCP_WriteSig -- return signal mask of channel write port.

SYNOPSIS

sigmask = NCP_WriteSig(channel)

D0 A0

ULONG NCP_WriteSig(APTR);

FUNCTION

This function returns the signal mask of the write port

of the given NCP channel. This signal is set if a write

request completes.

INPUTS

channel -- a NCP channel created by NCP_OpenChannel()

RESULT

sigmask -- signal mask of write port.

EXAMPLE

NOTES

Note that this function returns a signal mask, not a signal bit number.

BUGS

SEE ALSO

NCP_BeginWrite()

A.2.15 NCP Fault

Appendix A: API 29

NAME

NCP_Fault -- return localized NCP error string

SYNOPSIS

NCP_Fault(code, header, buffer, buffersize);

D0 A0 A1 D1

void NCP_Fault(LONG, STRPTR, STRPTR, ULONG);

FUNCTION

Returns a localized text string associated with the

error code.

INPUTS

code -- NCP error code

header -- header to insert before string. May be NULL

buffer -- buffer to write the error text to

buffersize -- size of buffer

RESULT

None.

EXAMPLE

NOTES

BUGS

None known.

SEE ALSO

dos.library/Fault()

A.2.16 NCP LinkRemoteRun

NAME

NCP_LinkRemoteRun -- use the NCP link channel to run a program on

the remote machine.

SYNOPSIS

error = NCP_LinkRemoteRun(filename, cmdline, cmdlinelen)

D0 A0 A1 D0

LONG NCP_LinkRemoteRun(STRPTR, APTR, ULONG);

FUNCTION

Use the LINK supervisor channel to have the remote link

run a program. No NCP channel needs to be opened in order

to perform this operation.

INPUTS

filename -- file name of the remote program to start

cmdline -- pointer to command line array. Note that

EPOC command lines are *NOT* zero terminated.

cmdlinelen -- length of command line in bytes. May be

zero, in which case no command line

is transfered.

RESULT

error -- either an AmigaNCP specific error code or the

result code from the remote link.

30 AmigaNCP Documentation

EXAMPLE

Have WORD.APP read the Amiga startup sequence:

UBYTE cmdline[] = {

"OANCPTest\000 V TES\000REM::SYS:\S\STARTUP-SEQUENCE\000"

};

error = NCP_LinkRemoteRun("WORD.APP", cmdline, sizeof(cmdline));

NOTES

See the Psion SDK for more information about using commandlines and

the LINK process launch feature.

BUGS

None known.

SEE ALSO

A.2.17 NCP clnl

NAME

NCP_clnl -- clear CR/LF at end of line.

SYNOPSIS

NCP_clnl(string)

A0

void NCP_clnl(STRPTR);

FUNCTION

Clears any CR or LF characters at the end of the string.

INPUTS

string -- pointer to string (contents will be modified)

RESULT

None.

EXAMPLE

NOTES

BUGS

None known.

SEE ALSO

A.2.18 NCP ibm2iso

NAME

NCP_ibm2iso -- convert IBM to ISO charachter

SYNOPSIS

isochar = NCP_ibm2iso(ibmchar)

D0 D0 0:7

UBYTE NCP_ibm2iso(UBYTE);

FUNCTION

Converts a character from the IBM to the ISO charset.

Appendix A: API 31

INPUTS

ibmchar -- character of the IBM codeset

RESULT

isochar -- equivalent character in the ISO codeset

EXAMPLE

NOTES

BUGS

None known.

SEE ALSO

A.2.19 NCP tab ibm2iso

NAME

NCP_tab_ibm2iso -- returns pointer to internal ibm2iso tab

SYNOPSIS

tab = NCP_tab_ibm2iso()

D0/A0

UBYTE *NCP_tab_ibm2iso(void);

FUNCTION

Returns a pointer to the internal ibm2iso conversion table.

This allows you to do more efficient conversion.

INPUTS

None.

RESULT

tab -- pointer to 256 byte conversion table.

EXAMPLE

NOTES

The pointer is returned both in D0 and A0.

BUGS

None known.

SEE ALSO

A.2.20 NCP tab iso2ibm

NAME

NCP_tab_iso2ibm -- returns pointer to internal iso2ibm tab

SYNOPSIS

tab = NCP_tab_iso2ibm()

D0/A0

UBYTE *NCP_tab_iso2ibm(void);

FUNCTION

32 AmigaNCP Documentation

Returns a pointer to the internal ISO2IBM conversion table.

This allows you to do more efficient conversion.

INPUTS

None.

RESULT

tab -- pointer to 256 byte conversion table.

EXAMPLE

NOTES

The pointer is returned both in D0 and A0.

BUGS

None known.

SEE ALSO

A.2.21 NCP iso2ibm

NAME

NCP_iso2ibm -- convert IBM to ISO charachter

SYNOPSIS

ibmchar = NCP_iso2ibm(isochar)

D0 D0 0:7

UBYTE NCP_iso2ibm(UBYTE);

FUNCTION

Converts a character from the ISO to the IBM charset.

INPUTS

isochar -- character of the ISO codeset

RESULT

ibmchar -- equivalent character in the IBM codeset

EXAMPLE

NOTES

BUGS

None known.

SEE ALSO

A.2.22 NCP IWORD

NAME

NCP_IWORD -- swap bytes in word

SYNOPSIS

sword = NCP_IWORD(word)

D0 D0

UWORD NCP_IWORD(UWORD);

Appendix A: API 33

FUNCTION

Swaps the byte order within the word.

INPUTS

word -- a 16 bit data word.

RESULT

sword -- the same word with the byte order swapped.

EXAMPLE

NOTES

BUGS

None known.

SEE ALSO

A.2.23 NCP IWORDP

NAME

NCP_IWORDP -- swap bytes in word (pointer version)

SYNOPSIS

sword = NCP_IWORDP(wordp1, wordp2)

D0 A0 A1

UWORD NCP_IWORDP(UWORD *, UWORD *);

FUNCTION

Swaps the byte order from the word pointed to by wordp1

and places the result in the word pointed to by wordp2.

INPUTS

wordp1 -- pointer to source word

wordp2 -- pointer to destination word

RESULT

sword -- the same word with the byte order swapped.

EXAMPLE

NOTES

The words don't need to be word aligned.

BUGS

The 68020++ version of amigancp.library requires the hardware

to be able to do misaligned word accesses. Some early

accelerator boards may have problems doing this.

SEE ALSO

A.2.24 NCP IWORDPI

NAME

NCP_IWORDPI -- swap bytes in word (in-place pointer version)

SYNOPSIS

sword = NCP_IWORDPI(wordp1)

34 AmigaNCP Documentation

D0 A0

UWORD NCP_IWORDP(UWORD *)

FUNCTION

Swaps the byte order within the word pointed to by wordp.

INPUTS

wordp -- pointer to word to swap

RESULT

sword -- the same word with the byte order swapped.

EXAMPLE

NOTES

The word doesn't need to be word aligned.

BUGS

The 68020++ version of amigancp.library requires the hardware

to be able to do misaligned word accesses. Some early

accelerator boards may have problems doing this.

SEE ALSO

A.2.25 NCP ILONG

NAME

NCP_ILONG -- swap bytes in longword

SYNOPSIS

slongword = NCP_ILONG(longword)

D0 D0

ULONG NCP_ILONG(ULONG);

FUNCTION

Swaps the byte order within the longword.

INPUTS

longword -- a 32 bit data word.

RESULT

slongword -- the same word with the byte order swapped.

EXAMPLE

NOTES

BUGS

None known.

SEE ALSO

A.2.26 NCP ILONGP

NAME

NCP_ILONGP -- swap bytes in longword (pointer version)

Appendix A: API 35

SYNOPSIS

sword = NCP_ILONGP(longwordp1, longwordp2)

D0 A0 A1

ULONG NCP_ILONGP(ULONG *, ULONG *);

FUNCTION

Swaps the byte order from the longword pointed to by longwordp1

and places the result in the longword pointed to by longwordp2.

INPUTS

longwordp1 -- pointer to source longword

longwordp2 -- pointer to destination longword

RESULT

sword -- the same word with the byte order swapped.

EXAMPLE

NOTES

The longwords don't need to be word aligned.

BUGS

The 68020++ version of amigancp.library requires the hardware

to be able to do misaligned word accesses. Some early

accelerator boards may have problems doing this.

SEE ALSO

A.2.27 NCP ILONGPI

NAME

NCP_ILONGPI -- swap bytes in longword (in-place pointer version)

SYNOPSIS

sword = NCP_ILONGPI(longwordp)

D0 A0

ULONG NCP_ILONGP(ULONG *)

FUNCTION

Swaps the byte order within the longword pointed to by longwordp.

INPUTS

longwordp -- pointer to longword to swap

RESULT

sword -- the same word with the byte order swapped.

EXAMPLE

NOTES

The longword doesn't need to be word aligned.

BUGS

The 68020++ version of amigancp.library requires the hardware

to be able to do misaligned word accesses. Some early

accelerator boards may have problems doing this.

SEE ALSO

36 AmigaNCP Documentation

A.3 Error codes from NCP functions

Several `amigancp.library'functions may return negative error numbers. Note that besides

the errors internal to `amigancp.library', standard EPOC OS errors may be returned by some

functions.

NCPE_INUSE (-1)

There is already a read/write request pending on the given channel.

NCPE_ABORTED (-2)

The read/write request has been aborted by NCP AbortXXX()

NCPE_OFFLINE (-3)

There is no NCP connection. This may denote that the remote NCP closed the con-

nection.

NCPE_INACTIVE (-4)

The channel is currently inactive. Most likely it has been closed by the remote process,

or the NCP connection is currently dropped due to serial link failure.

NCPE_NOTFOUND (-5)

You attempted to open an active channel and the remote process didn't exist.

NCPE_RECONNECTED (-6)

This is not really an error. Queued read requests will be terminated with this error

value if the NCP connection has been succesfully reconnected.

NCPE_NEWUSER (-7)

This is not really an error. It may come up if the remote client of a passive channel

changed.

Index 37

Index

(Index is nonexistent)

38 AmigaNCP Documentation

i

Table of Contents

1 Copyright . 1

2 Introduction . 3

2.1 Overview . 3

2.2 Parts of AmigaNCP . 3

3 Using AmigaNCP . 5

3.1 Installation . 5

3.2 Con�guring `amigancp.library' . 5

3.3 Starting AmigaNCP . 6

3.4 NCP Requesters . 6

4 AmigaNCP File Server . 9

4.1 Introducing the File Server . 9

4.2 Character conversion mode. 9

4.3 File Server Options . 10

4.3.1 CharSetConv . 10

4.3.2 ShowInfo . 10

4.3.3 HideEmptyDrives . 11

4.3.4 BufferSize . 11

5 AmigaNCP File System . 13

5.1 Introducing the File System . 13

5.2 Character Conversion Mode . 13

5.3 File System Options . 13

5.3.1 VolumeName . 14

5.3.2 DeviceName . 14

5.3.3 SharedRead . 14

5.3.4 CharSetConv . 15

5.3.5 HideEmptyDrives . 15

5.3.6 DontWarnMissingServer . 15

5.3.7 AutoReRead . 15

5.3.8 IconDir . 15

5.4 Implementation Details . 16

6 Other Tools . 17

6.1 AmigaNCP-Monitor . 17

6.2 S3PrintServer . 18

6.3 S3Run . 18

Appendix A API . 19

A.1 NCP Implementation . 19

A.2 Function Reference . 20

A.2.1 NCP CloseChannel . 20

A.2.2 NCP OpenChannel . 21

A.2.3 NCP Read . 22

A.2.4 NCP BeginRead . 22

A.2.5 NCP AbortRead . 23

A.2.6 NCP CheckRead . 23

ii AmigaNCP Documentation

A.2.7 NCP WaitRead . 24

A.2.8 NCP ReadSig . 25

A.2.9 NCP Write . 25

A.2.10 NCP BeginWrite . 26

A.2.11 NCP AbortWrite . 26

A.2.12 NCP CheckWrite . 27

A.2.13 NCP WaitWrite. 27

A.2.14 NCP WriteSig . 28

A.2.15 NCP Fault . 28

A.2.16 NCP LinkRemoteRun . 29

A.2.17 NCP clnl . 30

A.2.18 NCP ibm2iso . 30

A.2.19 NCP tab ibm2iso . 31

A.2.20 NCP tab iso2ibm . 31

A.2.21 NCP iso2ibm . 32

A.2.22 NCP IWORD . 32

A.2.23 NCP IWORDP . 33

A.2.24 NCP IWORDPI . 33

A.2.25 NCP ILONG . 34

A.2.26 NCP ILONGP . 34

A.2.27 NCP ILONGPI . 35

A.3 Error codes from NCP functions . 36

Index . 37

